When inner ear stem cell therapy becomes a reality.
نویسنده
چکیده
Editorial The clinical treatment of hearing loss is at once sophisticated and crude. Surgeons can use microsurgical techniques and lasers to manipulate ossicular prostheses fractions of a millimeter with often astounding improvement in hearing, for example, in the case of stapes fixation due to otosclerosis. For profound sensorineural impairment, the cochlea may be surgically implanted with an electrode that stimulates the spiral ganglion neurons of the cochlea, thereby enabling effective hearing for many people. Yet despite modern surgical techniques and scientific advances, outcomes for restoration of conductive hearing when there is no ossicular chain at all remain unpredictable at best. Cochlear implants are threaded into the cochlea with very little precision as to which neurons are stimulated by which electrodes. In addition , not a single surgical intervention will help the typical patient with tinnitus, for whom even sectioning of the auditory nerve would not provide relief. Scalpels and drills can only do so much. Roughly, the same situation exists for current hearing aid technology. The historical evolution of assistive hearing devices, from the lowly ear trumpet to the modern digital hearing aid, provides irrefutable evidence of progress. For many patients, a simple hearing aid properly fitted can be life changing. However, as the severity of hearing loss worsens, hearing aid limitations become increasingly clear—for the patient with poor discrimination, for example, even the most powerful amplification available provides a fundamentally impoverished version of the auditory world. In other words, conventional amplification can be both remarkably helpful and glaringly insufficient. The more demanding a patient's auditory needs are, the clearer the limitations in our methods of intervention often appear. It is quite plausible that molecular biology, rather than surgery or amplification, holds the key for the next transfor-mative leap forward in our ability to treat hearing loss. As the review article (" Stem Cell Therapy for the Inner Ear: Recent Advances and Future Directions ") in this issue by Okano and Kelley suggests, a great deal of research has been done in the field of stem cells for the inner ear. This field has progressed in a relatively short span of time from an intriguing area of hypothetical inquiry to a viable possibility in the not-too-distant horizon. Scientists are truly starting to unravel the mysteries of hair cells and what it would take to regenerate them in humans. Through the development of stem cell therapy for the inner ear, it …
منابع مشابه
Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملInner ear cell therapy targeting hereditary deafness by activation of stem cell homing factors
Congenital deafness affects about 1 in 1000 children and more than half of them have a genetic background such as Connexin26 (CX26) gene mutation. Inner ear cell therapy for sensorineural hearing loss has been expected to be an effective therapy for hereditary deafness. Previously, we developed a novel strategy for inner ear cell therapy using bone marrow mesenchymal stem cells as a supplement ...
متن کاملStem Cells So far! Stem Cell Therapy Facts and Principles
Stem cells are cells with the ability to divide for indefinite periods and to give rise to specialized cells. Stem cell therapy has now been emerged as an extraordinary promise to treat a wide range of diseases and conditions. However, except blood stem cell transfer by bone marrow transplant which has been used as an standard practice for more than 50 years, nearly all of therapeutic potenti...
متن کاملSurvival and neural differentiation of adult neural stem cells transplanted into the mature inner ear.
The cochlear sensory epithelium and spiral ganglion neurons (SGNs) in the adult mammalian inner ear do not regenerate following severe injury. To replace the degenerated SGNs, neural stem cell (NSC) is an attractive alternative for substitution cell therapy. In this study, adult mouse NSCs were transplanted into normal and deafened inner ears of guinea pigs. To more efficiently drive the implan...
متن کاملPerspectives for the treatment of sensorineural hearing loss by cellular regeneration of the inner ear.
Sensorineural hearing loss is a caused by the loss of the cochlear hair cells with the consequent deafferentation of spiral ganglion neurons. Humans do not show endogenous cellular regeneration in the inner ear and there is no exogenous therapy that allows the replacement of the damaged hair cells. Currently, treatment is based on the use of hearing aids and cochlear implants that present diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in amplification
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2012